Modeling and Simulation of Rice Husk Gasification using Equilibrium Approach
DOI:
https://doi.org/10.26555/chemica.v11i2.208Keywords:
Gasification, Simulator, Equilibrium, Rice husk, Synthetic gasAbstract
Gasification is a technique of changing solids into gases. So far, gasification has been widely used by utilizing coal, which contains many impurities like sulfur. Because of that, a gasification technology that utilizes biomass was developed. One of the biomass that is often found in Indonesia is rice husk. This research will use an equilibrium approach to study rice husk gasification modeling and simulation using the Aspen Plus v8.8 simulator. In addition, the influence of the number of gasification agents, such as steam and air, and gasification temperature was also studied in this research. The amount of steam used is expressed in the steam-to-biomass ratio (SBR), while the amount of air used is expressed in the equivalence ratio (ER). This study uses SBR 0.4 and 0.6, ER 0.4 and 0.6, and gasification temperatures of 750oC and 850oC. From this study, if the SBR is increased, the amount of H2 will also be greater. Meanwhile, the increase in ER will reduce the amount of H2 and CO in synthetic gas. The higher gasification temperature will increase the CO composition but decrease the H2 gas content.
References
T. Iswanto, M. Rifa’i, Y. Rahmawati, and S. Susianto, “Desain pabrik synthetic gas (syngas) dari gasifikasi batu bara kualitas rendah sebagai pasokan gas PT. Pupuk Sriwidjaja,” Jurnal Teknik ITS, vol. 4, no. 2, Dec 2015, doi: 10.12962/j23373539.v4i2.9705.
D. Hantoko, M. Yan, B. Prabowo, H. Susanto, X. Li, and C. Chen, “Aspen plus modeling approach in solid waste gasification,” In: Current developments in biotechnology and bioengineering, Elsevier, Jan 2019, pp. 259–281, doi: 10.1016/B978-0-444-64083-3.00013-0.
P. Basu, Combustion and Gasification in Fluidized Beds 1st Edition, Boca Raton: CRC Press, 2006. [Online]. Available: https://doi.org/10.1201/9781420005158.
E. T. Champagne, D. F. Wood, B. O. Juliano, and D. B. Bechtel, “Chapter 4: The rice grain and its gross composition,” In: Champagne, E. T. (ed). Rice Chemistry and technology (3rd ed.), New Orleans, USA: American Association of Cereal Chemists Press, 2004, pp. 77–108.
I. Pujotomo, “Potensi pemanfaatan biomassa sekam padi untuk pembangkit listrik melalui teknologi gasifikasi,” Jurnal Ilmiah: Energi & Kelistrikan, vol. 9, no. 2, pp. 126–135, Dec 2017.
R. Rauch, J. Hrbek, and H. Hofbauer, “Biomass gasification for synthesis gas production and applications of the syngas,” Wiley Interdisciplinary Reviews: Energy and Environment, vol. 3, no. 4, pp. 343–362, Jul 2014, doi: 10.1002/wene.97.
N. Ramzan, A. Ashraf, S. Naveed, and A. Malik, “Simulation of hybrid biomass gasification using Aspen plus: A comparative performance analysis for food, municipal solid and poultry waste,” Biomass and Bioenergy, vol. 35, no. 9, pp. 3962–3969, Oct 2011, doi: 10.1016/j.biombioe.2011.06.005.
F. Kartal and U. Özveren, “A comparative study for biomass gasification in bubbling bed gasifier using Aspen HYSYS” Bioresour. Technol. Rep., vol. 13, no. 7, Dec 2020, doi: 10.1016/j.biteb.2020.100615.
A. Gagliano, F. Nocera, M. Bruno, and G. Cardillo, “Development of an equilibrium-based model of biomass gasification by Aspen Plus,” Energ. Proceed., vol. 111, pp. 1010–1019, Mar 2017, doi: 10.1016/j.egypro.2017.03.264.
S.A. Salaudeen, P. Arku, and A. Dutta, “Gasification of plastic solid waste and competitive technologies,” in Plastic to Energy Fuel, Chemicals, and Sustainability Implications, Cambridge, United States: William Andrew Publishers, 2019, pp. 269-293.
K. Sun, “Optimization of biomass gasification reactor using Aspen Plus,” Høgskolen i Telemark Porsgrunn, 2015.
I. Qistina, D. Sukandar and T. Trilaksono, “Kajian kualitas briket biomassa dari sekam padi dan tempurung kelapa,” Jurnal Kimia VALENSI, vol. 2, no.2, pp. 136–142, Nov 2016, doi: 10.15408/jkv.v0i0.4054.
D. Almpantis, and A. Zabaniotou, “Technological solutions and tools for circular bioeconomy in low-carbon transition: Simulation modeling of rice husks gasification for CHP by aspen plus V9 and feasibility study by aspen process economic analyzer,” Energies, vol. 14, no. 7, Apr 2021, doi: 10.3390/en14072006.
J. P. Ciferno, and J. J. Marano, “Benchmarking biomass gasification technologies for fuels, chemicals, and hydrogen production,” US Department of Energy National Energy Technology Laboratory, June 2002.
M. P. Gamero, J. A. Santamaria, J. L. Valverde, P. S´anchez, and L. S. Silva, “Three integrated process simulation using aspen plus®: pine gasification, syngas cleaning, and methanol synthesis,” Energy Conversion Management, vol. 177, pp. 416-427, Dec 2018, doi: 10.1016/j.enconman.2018.09.088.
D. T. Pio, L. A. C. Tarelho, and M. A. A Matos, “Characteristics of the gas produced during biomass direct gasification in an autothermal pilot-scale bubbling fluidized bed reactor,” Energy, vol. 120, pp. 915-928, Feb 2017, doi: 10.1016/j.energy.2016.11.145.
P. Ji, W. Feng, and B. Chen, “Production of ultrapure hydrogen from biomass gasification with air,” Chem. Eng. Sci., vol. 64, no. 3, Feb 2009, doi: 10.1016/j.ces.2008.10.015.
H. De Lasa, E. Salaices, J. Mazumder, and R. Lucky, “Catalytic steam gasification of biomass: catalysts, thermodynamics and kinetics,” Chem. Rev., vol. 111, no. 9, Sep 2014, doi: 10.1021/cr200024w.
V. Marcantonio, M. De Falco, M. Capocelli, E. Bocci, A. Colantoni, and M. Villarini, “Process analysis of hydrogen production from biomass gasification in fluidized bed reactor with different separation systems,” Int. J. Hydrogen Energy, vol. 44, no. 21, pp. 10350-10360, Apr 2019, doi: 10.1016/j.ijhydene.2019.02.121.
I. L. Motta, N. T. Miranda, R. M. Filho, and M. R. W. Maciel, “Sugarcane bagasse gasification: Simulation and analysis of different operating parameters, fluidizing media, and gasifier types,” Biomass Bioenergy, vol. 122, pp. 433-445, Mar 2019, doi: 10.1016/j.biombioe.2019.01.051.
P. Kaushal and R. Tyagi, “Advanced simulation of biomass gasification in a fluidized bed reactor using Aspen Plus,” Renewable Energy, vol. 101, pp. 629-636, Feb 2017, doi: /10.1016/j.renene.2016.09.011.
J . Cardoso, V. Silva, D. Eus´ebio, P. Brito, R. M. Boloy, L. Tarelho, and J. L. Silveira, “Comparative 2D and 3D analysis on the hydrodynamics behaviour during biomass gasification in a pilot-scale fluidized bed reactor,” Renewable Energy, vol 131, pp. 713-729, Feb 2019, doi: 10.1016/j.renene.2018.07.080.
P. Ahmed, M. A. Habib, R. Ben-Mansour, P. Kirchen, and A. F. Ghoniem, “CFD (computational fluid dynamics) analysis of a novel reactor design using ion transport membranes for oxy-fuel combustion,” Energy, vol. 77, pp. 932-944, Dec 2014, doi: 10.1016/j.energy.2014.10.003.
Y. R. Lee, H. S. Choi, H. C. Park, and J. E. Lee, “A numerical study on biomass fast pyrolysis process: A comparison between full lumped modeling and hybrid modeling combined with CFD,” Comput. Chem. Eng., vol. 82, pp. 202-215, Nov 2015, doi: 10.1016/j.compchemeng.2015.07.007.
N. D. Couto, V. B. Silva, E. Monteiro, and A. Rouboa, “Assessment of municipal solid wastes gasification in a semi-industrial gasifier using syngas quality indices,” Energy, vol. 93, pp. 864-873, Dec 2015, doi: 10.1016/j.energy.2015.09.064.
L. Vaquerizo and M. J. Cocero, “CFD–Aspen Plus interconnection method. Improving thermodynamic modeling in computational fluid dynamic simulations,” Comput. Chem. Eng. vol. 113, pp. 152-161, May 2018, doi: 10.1016/j.compchemeng.2018.03.019.